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Abstract
Recently there has been considerable interest in the displacive ferroelectric
phase transition near T = 28 K in O-18 isotopic strontium titanate. Special
efforts have been made to combine the quantum criticality exponents α = −2
(2D) or −3 (3D), δ = 3, and γ = 2 with the thermodynamic inequalities of
Rushbrooke, Griffiths, Widom et al, which become exact equalities under the
hypothesis of scaling. In particular, these have led others to the inference that
γ = 2.0 and β = 1.2 in SrTiO3. First we show that this is mathematically
incorrect and explain why (quantum criticality is exact only at T = 0,
whereas the thermodynamic (in)equalities are valid everywhere except T = 0).
Second, we show that the inferred values strongly violate a new equality,
γ − 2β = ν(4 − d − 2η) > 0, we derive from hyperscaling. Third, we
show that the existing soft mode frequency data ω(T ) from Takesada et al
(2006 Phys. Rev. Lett. at press) yield above Tc (from the Lyddane–Sachs–Teller
relationship) γ = 1.0. Fourth, we remeasure β from the polarization P(T )

and find β = 0.50 ± 0.02. Fifth, we remeasure the electric susceptibility
and find that it perfectly satisfies the Salje–Wruck–Thomas equation, which
requires γ = 1.0. The important conclusions are: (a) O-18 SrTiO3 near Tc is
mean-field; (b) the thermodynamic scaling equalities of Rushbrooke, Griffiths
et al are mathematically incompatible with quantum criticality theory; (c) a new
hyperscaling relationship makes β = 1.2 and β > γ/2 impossible.

1. Introduction

Recently there has been a series of publications in which authors fit experimental data on
ferroelectrics to infer critical exponents describing the behaviour near the Curie temperature,
especially for strontium titanate with oxygen isotope 18 [1–5]. Some of these were shown to
be compatible with those predicted from quantum criticality theory [6]. Although not all of the
commonly measured exponents α, β, γ, δ were measured, the authors used thermodynamic
inequalities, which become equalities under the widely accepted hypothesis of scaling, to
calculate the remaining exponents. Here α describes the specific heat divergence; β , the order
parameter evolution with temperature; γ , the electric susceptibility evolution with temperature;
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and δ, the electric displacement vector D (or polarization P) with conjugate field E . This
procedure yielded some extraordinarily unusual exponents, such as β = 1.2. In fact, no
analytical theory produces β > 0.65. It is especially suspicious that γ − 2β = −0.4 is
negative; we show below that this violates hyperscaling [7].

2. Theory

2.1. Quantum criticality theory

As initially developed by Schneider et al [6], quantum criticality theory is applicable only at
T = 0. It calculates critical exponents δ = 3, α = −d = (minus) dimensionality (−2 or −3);
and γ = 2. It is important to note that it does not calculate β at all. Since β is defined only
for T < Tc, and Tc = 0, β is not defined in the theory. Therefore Schneider and co-workers
assumed that for real systems where Tc is near zero but finite, β = 1/2; however, this value is
taken not from mean-field, but from the spherical quantum model [8]. It is also very important
to note that γ = 2, when found experimentally, would not in itself imply quantum criticality,
because γ = 2 is also predicted from the quantum spherical model [8]. Finally it is important to
note that the sign of α is negative, unlike many statistical mechanical models (e.g., α = +1/2
at mean-field tricritical points and +1/8 for (3D) Ising models). We emphasize that quantum
criticality theory is not valid for finite temperatures.

2.2. Thermodynamic (in)equalities

There are a number of famous inequalities among the thermodynamic critical exponents, such
as those of Griffiths, Rushbrooke, Widom, Fisher, etc. These all become equalities under
the further assumption of scaling [8]. However, these generally are valid only for finite
temperatures and are untrue at T = 0. This is well illustrated with the Rushbrooke (in)equality,
whose derivation is short and simple [9].

Using the more familiar notation of magnetism, Rushbrooke started with

χT(CH − CM ) = T (∂M/∂T )2
H , (1)

where CM , CH are the specific heats at constant magnetization M and constant field H (in the
ferroelectric case these become CD and CE , where D is the displacement vector and is nearly
the same as the polarization P; E is electric field).

Assuming that specific heats are not negative quantities (physically necessary), he
rewrites (1) as

χTCH � T (∂M/∂T )2
H , (2)

from which, using the definitions CH ≈ t−α′
, χT ≈ t−γ ′

, and (∂M/∂T )H ≈ tβ−1 (here t is the
reduced temperature (Tc − T )/Tc)), the relationship (2) becomes

α′ + 2β + γ ′ � 2, (3)

where primes designate values below Tc. The scaling assumption makes (3) an equality and
also requires α = α′ and γ = γ ′, so we may rewrite (3) as

α + 2β + γ = 2. (4)

If we naively insert the values from quantum criticality theory for SrTiO3, which are
α = −2 and γ = 2, we predict from (3) that

β = 1. (5)

However, we note in (1) that the left-hand side of the equation is zero at T = 0, because
CH = CM . Similarly the right-hand side is zero for two reasons: T = 0 (first term), and
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also (∂M/∂T )H = 0 (second term) at T = 0 (Third Law of Thermodynamics). Therefore
equations (1) and (2) cannot be applied at T = 0, for they yield zero divided by zero, and
hence equation (5) is an error (even as an inequality as from (3)) obtained by mathematically
inconsistent assumptions of quantum criticality and the Rushbrooke equation.

Note that this error in obtaining β = 1 in (5) is independent of any experimental data. It is
a simple mathematical mistake.

2.3. Hyperscaling

In addition to the scaling arguments above, one may invoke arguments from hyperscaling.
Hyperscaling involves the dimensionality d of models and usually the critical exponents ν and
η. One important hyperscaling relationship is

γ = (2 − η)ν. (6)

This is equation (12.29) of Stanley’s text [8] and equation (5.4.10) of the text by Chaikin
and Lubensky [10].

A second important hyperscaling relationship is

d − 2 + η = 2βν (7)

which is equation (12.28) in Stanley and equation (5.4.15) in Chaikin and Lubensky.
Here ν is the exponent describing the temperature evolution of the correlation length ξ in

the pair correlation function G(r) ≈ (e−r/ξ )/r ; η is the exponent describing the wavevector
dependence of the structure factor S(q) at Tc: S(q) ≈ q−2+η.

From (6) and (7) we immediately get

γ − 2β = ν(2 − η) − ν(d − 2 + η) (8)

whence

γ − 2β = ν(4 − d − 2η). (9)

Equation (9) is the most important result of the present paper, and although it follows
simply from Stanley or Chaikin and Lubensky, it seems not to have been published explicitly
before. Note that Chaikin and Lubensky emphasize that these equations are not generally valid
for d � 4, except that for mean-field d = 4, the upper critical dimensionality, is required. We
note that (9) is satisfied by the (2D) and (3D) Ising and Heisenberg models, using the most
recent values of γ, β, ν, and η. For all realistic models, the right-hand side of (9) is � 0.
Therefore, the experimental values from Kleeman et al of γ = 1.97–2.01 and β = 1.2 are
impossible, since they require a negative value −0.4. Thus, the values of γ and β published by
Kleeman et al [1–5] strongly violate hyperscaling, a point not made previously.

3. Experiment

The experiments on oxygen-18 isotopically enriched strontium titanate all require mean-field
theory for their correct interpretation.

3.1. Raman data

The recent Raman results from Yagi’s group [11] show an underdamped soft mode from about
400 to 20 GHz in the paraelectric phase whose temperature dependence is given by

ω(T ) ≈ (−t)γ /2, (10)

with γ = 1.0 and where the proportionality to γ /2 follows rigorously from the
Lyddane–Sachs–Teller relationship [12]. (Note that ω(T ) does NOT involve β , a common
misconception.) This is of course a mean-field result.
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3.2. Polarization and susceptibility data

Levstik and Filipic have shown [13] by direct measurement below Tc = 28 K in 95% O-18
SrTiO3 that

P(T ) ≈ tβ = t0.50, (11)

another mean-field result, and that the electric susceptibility satisfies the Salje–Wruck–Thomas
equation, which assumes γ = 1; hence that

χ(T ) ≈ tγ = t1.0, (12)

another mean-field result. Others who have tried to apply the Salje equation and deduce γ = 2
from fitting data to it apparently do not recognize that this equation assumes γ = 1 in its
derivation.

3.3. Artefacts in experimental fitting of γ = 2

Although ideal ferroelectrics with second-order phase transitions have dielectric constants that
diverge at Tc, all real crystals exhibit finite maxima with flat or rounded peak values. This
occurs because of: (a) inhomogeneous strain; (b) finite applied electric fields (true divergence
requires E = 0); (c) atomic-scale disorder; etc. Thus a graph of reciprocal dielectric
constant 1/ε(T ) will exhibit a flat base at Tc, followed by rapid curvature that is always best
approximated as quadratic, and farther away from Tc, a linear behaviour. Thus, a naive fitting of
such data always yields γ = 2.0 near Tc. But this is a complete artefact of the fitting procedure
and has nothing to do with true critical (fluctuation-dominated) phenomena.

4. Conclusions

We show that analyses combining quantum criticality exponents with thermodynamic
inequalities that become equalities under the assumption of scaling are mathematically
inconsistent, since they combine theories whose temperature ranges of applicability do not
overlap. We further show that the experimental relationship γ − 2β = −0.4 published for
the ferroelectric transition in SrTi18O3 strongly violates hyperscaling. And we show that the
actual experimental values of γ = 1.0 and β = 0.50 measured in several independent ways
are mean-field. Fitting of ε(T ) in real ferroelectrics always gives a value γ = 2.0 near Tc, but
this is a fitting artefact arising from pedestrian causes such as inhomogeneous strain and finite
probe fields E , unrelated to critical (fluctuation-dominated) dynamics.
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